
Malaysian Journal of Mathematical Sciences 2(1): 97-112 (2008) 

Characterization of Convexity of Water Bodies 

 

1
S. Dinesh and 

2
A. Pathmanabhan 

1
Science and Technology Research Institute for Defence (STRIDE),  

Ministry of Defence, Malaysia. 
2  

Faculty of Engineering and Technology, Multimedia University 

 E-mail: dinsat60@hotmail.com 

 
 

ABSTRACT 

Convexity is considered as one the basic descriptors of shapes. In this paper, the 
characterization of the convexity of water bodies is performed. Concepts of 
mathematical morphology are used to compare water bodies and their corresponding 
convex hulls in terms of their size distribution, shape-size complexity and homotopic 
ratios. A power law relationship is observed between the convexity measures and 
areas of water bodies.  This power law relationship arises as a consequence of the 
fractal properties of the convexity of water bodies. Convex hull computation 
increases the size of the water bodies. This enlargement is not even; smaller water 

bodies undergo smaller enlargements compared to larger water bodies, and hence, 
convex hull computation alters the water body size distribution. The computed 
convex hulls have a more even shapiness index distribution compared to the water 
bodies, as water bodies are random chaotic objects while convex hulls are well 
defined polygons. Convex hull computation also causes a loss of homotopic 
information. This study provides useful insight into the dynamical behavior of the 
floodings of water bodies.  
 

Keywords: water bodies, convexity; water bodies; mathematical morphology; fractal 
power law relationship; size distribution; shape-size complexity; homotopic ratio. 

 

INTRODUCTION 

Convexity is considered as one of the basic descriptors of shapes. 
Convexity in image processing has been studied for quite some time 

(Valentine, 1964; Stern, 1989; Boxer, 1993; Held and Abe, 1994; Popov, 

1996; Zunic and Rosin, 2004; Rosin and Mumford, 2004; Rahtu et al., 2004, 

2006; Kolesnikov and Fränti, 2005; Varošanec, 2007), and has numerous 
applications, including shape decomposition (Latecki and Lakämper, 1999; 

Rosin, 2000), camouflage breaking (Tankus and Yeshurun, 2000), object 

indexing (Latecki and Lakämper, 2000), measurement of border 
irregularities in medical image analysis (Lee et al., 2003), handwritten word 

recognition (Kapp et al., 2007) and estimation of derivatives of holomorphic 

functions (Li, 2007). 
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An object P  is said to be convex if it has the following property: If 

points A  and B  belong to P , then all points from the line segment [ ]AB  

belong to P  as well. The smallest convex set which includes P  is called the 

convex hull of P  and is denoted as ( )CH P . The convexity measure ( )C P  

is defined to be: 
 

( )C P = Area ( )P / Area ( ( ))CH P            (1) 

 
Convexity measures have the following properties (Zunic and Rosin, 

2004): 

 
1) Convexity measures have the range of (0,1] 

2) The convexity measure of a given object equals 1 if and only if 

this object is convex 

3) There are objects whose convexity measure is arbitrarily close to 
0 

4) The convexity measure of an object is invariant under similarity 

transformations of the object. 
 

MATHEMATICAL MORPHOLOGY 

Mathematical morphology is a branch of image processing that deals 
with the extraction of image components that are useful for representational 

and description purposes. Mathematical morphology has a well developed 

mathematical structure that is based on set theoretic concepts. The effects of 
the basic morphological operations can be given simple and intuitive 

interpretations using geometric terms of shape, size and location. The 

fundamental morphological operators are discussed in Matheron (1975), 

Serra (1982) and Soille (2003). Morphological operators generally require 
two inputs; the input image A, which can be in binary or grayscale form, and 

the kernel B, which is used to determine the precise effect of the operator.  

Dilation sets the pixel values within the kernel to the maximum 

value of the pixel neighborhood. The dilation operation is expressed 

as: 

{A B a b⊕ = + }:,a A b B∈ ∈             (2) 

 

Erosion sets the pixels values within the kernel to the minimum value 

of the kernel. Erosion is the dual operator of dilation:  
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{ }: ,A B a b a A b B⊕ = + ∈ ∈             (3) 

 

An opening (Equation 4) is defined as an erosion followed by a 
dilation using the same kernel for both operation. Binary opening preserves 

foreground regions that have a similar shape to this kernel, or that can 

completely contain the kernel, while eliminating all other regions of 
foreground pixels. 

 

                                                            (4) 

 

Morphological reconstruction allows for the isolation of certain 

features within an image based on the manipulation of a mask image X  and 
a marker image Y . It is founded on the concept of geodesic transformations, 

where dilations or erosion of a marker image are performed until stability is 

achieved (represented by a mask image) (Vincent 1993). 
 

The geodesic dilation, Gδ used in the reconstruction process is 

performed through iteration of elementary geodesic dilations, (1)δ  until 

stability is achieved.  
 

The geodesic dilation Gδ  used in the reconstruction process is 

performed through iteration of elementary geodesic dilations, (1)δ ,  until 

stability is achieved.  
 

(1)( ) ( )
G

Y Yδ δ= o (1) ( )Yδ o (1) ( )...Yδ until stability            (5) 

                                     

The elementary dilation process is performed using a standard 

dilation of size one followed by an intersection. 
 

(1) ( )Y Y B Xδ = ⊕ ∩                            (6) 

 

The operation in equation 6 is used for elementary dilation in binary 
reconstruction. In greyscale reconstruction, the intersection in the equation is 

replaced with a pointwise minimum (Vincent 1993). 

Morphological reconstruction is a useful filtering tool. Figure 1(a) 

shows an image with circles of various sizes. In order to filter the smaller 
sized circles, first opening is performed using a square kernel of size 30. The 

circles that are unable to completely contain the kernel are removed, while 
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the shape of remaining circles is altered (Figure 1(b)). Morphological 

reconstruction is implemented with Figure 1(a) being the mask and Figure 
1(b) being the marker. This restores the original shape of the remaining 

circles (Figure 1(c)). This process is known as opening by reconstruction. 

 

CHARACTERIZATION OF CONVEXITY  

OF WATER BODIES 

The data set 

Gothavary River, which lies in central India, originates near 

Triambak in the Nasik district of Maharashtra, and flows through the states 
of Madhya Pradesh, Karnataka, Orissa and Andhra Pradesh. Although its 

point of origin is just 80 km away from the Arabian Sea, it journeys 1,465 

km to empty into the Bay of Bengal. Some of its tributaries include 
Indravati, Manjira, Bindusara and Sarbari. Some important urban centers on 

its banks include Nasik, Aurangabad, Nagpur, Nizamabad, Rajahmundry, 

and Balaghat. The Gothavary River is often referred to as the Vriddh (Old) 

Ganga or the Dakshin (South) Ganga. The Gothavary River catchment has 
an area of 312, 870 km

2 
and receives more than 85% of its annual rainfall 

during the monsoon season (June-September). Hence, the water resource in 

this river is largely due to monsoon rainfall and largely affected by monsoon 
extremities, resulting in floods during some years and droughts during 

others. 

 

Figure 2(a) shows a number of water bodies of varying shape and 
sizes situated in a portion of the floodplain region of Gothavary River. The 

water bodies were traced from IRS 1D remotely sensed data. Due to the 

impracticalities of dealing with incomplete water bodies, only the complete 
water bodies are considered (Figure 2(b)). A total of 67 distinct individual 

water bodies (Figure 2(c)) are identified using the connected component 

labeling (Pitas, 1993).  
 

Computation of convexity measures 

The convex hulls of the water bodies (Figure 3) are computed using 

the convex hull computing neural network (CHCNN) algorithm proposed in 
Leung et al. (1997). The algorithm is based on a two-layered neural network, 

topologically similar to ART, with an adaptive training strategy called 

excited learning. CHCNN provides a parallel on-line and real-time 
processing of data which, after training, yields two closely related 
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approximations, one from within and one from the outside, of the desired 

convex hulls. The accuracy of the approximated convex hull is 
approximately O[K

-1/(n-1)
], where K is the number of neurons in the output 

layer of the CHCNN. When K is taken to be sufficiently large, CHCNN can 

generate any accurate approximate convex hull.  
 

The convexity measures of the water bodies are computed (Figure 4). 

It is observed in Figure 5 that the smaller water bodies have larger convexity 

measures compared to the larger water bodies, indicating that the smaller 
water bodies have more regularity in terms of their shapes.  

A log-log plot of the water body convexity measures C against the 

water body areas S is drawn (Figure 6). A power law relationship is 
observed between the two parameters: 

 

log 0.1119 log 0.192C S= ∗ +            (7) 

 
0.1190.192C S −= − ∗             (8) 

 
This power law relationship arises as a consequence of the fractal 

properties of the convexity of water bodies. In Equation 8, 0.192 is a 

proportionality constant c while 0.119 is the fractal dimension of the 
convexity of water bodies D, which indicates the distribution of the 

convexity measures; a higher value of D indicates a more varied distribution, 

while a lower value of D indicates a more uniform distribution. 

 

Size distribution 

Size distribution characterization is performed by implementing 

opening by reconstruction iteratively on the water bodies and their 
corresponding convex hulls using square kernels of increasing size. In each 

iteration, opening removes the objects that are unable to completely contain 

the kernel. The shapes of the remaining objects are modified. The 
reconstruction process restores the original shape of the remaining objects.  

 

Plots of the number of objects remaining after each iteration of 

opening by reconstruction against the kernel size are drawn for the water 
bodies (Figure 7(a)) and the convex hulls (Figure 7(b)). A well marked peak 

is observed in Figure 7(a), at kernel size 10. This can be interpreted as the 

dominant size of the water bodies. The convex hulls have two dominant 
sizes, at kernel sizes 11 and 13. Significant differences are observed in the 

plot shapes of Figures 7(a) and 7(b).  
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These differences occur as convex hull computation enlarges the size 

of the water bodies, causing changes in their size distribution. This 
enlargement is not even; as indicated in Figure 5, smaller water bodies 

undergo smaller enlargements compared to the larger water bodies. 

 

Shape-Size Complexity 

The shape-size complexity of the water bodies and their 

corresponding convex hulls are characterized using the pattern spectrum 

procedure proposed in Maragos (1989). Pattern spectrum is a shape-size 
descriptor that is used to detect critical scales in an image object and 

quantify various aspects of its shape-size content. The term “shape” means 

any image conveying information about intensity or range, or any other 
finite-extent signal whose graph is viewed as an image object conveying 

some pictorial information. The term “scale” is defined as the smallest size 

of a shape pattern (generated by a kernel) that can fit inside the image.  

 
Pattern spectrum is used to compute the shapiness index of an 

object, which is the degree of likeness between the object and the kernel 

used. Shapiness index is computed by first performing recursive opening on 
the object until all foreground pixels in the image are removed (the image 

becomes a null set). The shapiness index I  of the object is the area of 

remaining foreground pixels in the image produced one iteration before 

recursive opening produces a null set  ( )S Y , divided by the area of the 

original object ( ).S X  

( ) / ( )I S Y S X=               (9) 

A shapiness index value of 1 indicates that the object and the kernel 
are completely similar. A shapiness index value of 0 indicates that the object 

and the kernel are geometrically and topologically dissimilar. 

 
The shapiness indices of the water bodies and their corresponding 

convex hulls are computed using a size 3 square kernel. Plots of the 

computed shapiness indices against the object areas drawn are drawn for the 

water bodies (Figure 8(a)) and the convex hulls (Figures 8(b)). It is observed 
in Figure 8(a) that the smaller water bodies have larger shapiness indices 

compared to the larger water bodies. The shapiness indices of the convex 

hulls are more evenly distributed among the larger and smaller convex hulls. 
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This difference occurs as water bodies consist of chaotic random shapes, 

while convex hulls are well defined polygons. 

 

Homotopic Ratios 

Homotopy is the study of the properties of an object that are 
unaffected by any deformation, as long as there is no tearing or joining of 

the object. Homotopic properties are useful for global descriptions of 

regions in an object plane (Pitas, 1993). A skeleton is a one pixel thick line 

representation of an object that goes through the middle of the object and 
preserves the homotopy of the object. Skeletonization is the process of 

reducing foreground regions in a binary image to a skeleton, while 

discarding the remaining foreground pixels. The resultant skeleton is used 
for the computation of length and direction, or for the detection of special 

topological structures such as end points and triple points (Bookstein, 1979). 

In this paper, skeletonization is implemented using the skeletonization by 

morphological thinning algorithm proposed in Jang and Chin (1990). 
Skeletonization by morphological thinning is defined as successive removal 

of outer layers of pixels from an object while retaining any pixels whose 

removal would alter the connectivity or shorten the legs of the skeleton. The 
process is converged or completed when no further pixels can be removed 

without altering the connectivity or shortening the skeletal legs. 

 
The homotopic ratios of the water bodies and their corresponding 

convex hulls are the lengths of the skeletons of the water bodies (Figure 

9(a)) divided by the lengths of the skeletons of the convex hulls (Figure 

9(b)). A homotopic ratio of 1 indicates that the two objects have completely 
similar homotopies, while a homotopic ratio of 0 indicates that the two 

objects have completely dissimilar homotopies. A homotopic ratio of less 

than 1 indicates a loss of homotopic information, while a homotopic ratio of 
more than 1 indicates an addition of homotopic information. As shown in 

Figure 10, all the computed homotopic ratios are less than 1, indicating that 

convex hull computation causes a loss of homotopic information. 
 

 

CONCLUSION 

In this paper, the characterization of the convexity of water bodies 

was performed. A power law relationship was observed between the 

convexity measures and areas of water bodies.  This power law relationship 
arises as a consequence of the fractal properties of the convexity of water 
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bodies. Convex hull computation increases the sizes of the water bodies. 

This enlargement is not even; smaller water bodies undergo smaller 
enlargements compared to larger water bodies, and hence, convex hull 

computation alters the water body size distribution. The computed convex 

hulls have a more even shapiness index distribution compared to the water 
bodies, as the water bodies are random chaotic objects while convex hulls 

are well defined polygons. Convex hull computation also causes a loss of 

homotopic information.  

 
In general, water bodies have varying degrees of convexity, while the 

self organized criticalities of their floodings are convex objects. The study of 

the convexity of water bodies can provide useful insight into the flooding 
properties of water bodies. Work is currently being done to study the 

convexity of various degrees of simulated floodings. 
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FIGURES 

 

       

 

 
 

 
(a) The original                (b) The opened                 (c) The reconstructed 

        image                               image                                image   

 
Figure 1: Application of opening by reconstruction to perform filtering.   

 
 

 

 

 

 

(a) The original water bodies traced from IRS 1D 

remotely sensed data 

 

 

 

 

 

 

 

 
(b) The water bodies after removal of incomplete water bodies 
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(c) Identification of the individual water bodies using connected component 

labeling. The water body count number is determined by the grey level; the brighter 

the grey level, the larger the water body number. 

 

Figure 2: Water bodies of varying shape and sizes situated in a portion of the 

flood plain region of Gothavary River. 

 

 

 

 

 

Figure 3: The convex hulls of the water bodies. 

 

 

Figure 4: Convexity measures of the water bodies. 
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Figure 5: Plot of the convexity measures against the  

areas of the water bodies. 

 

         
 

Figure 6: Log-log plot of the convexity measures C against  

the areas of the water bodies S. 

 

 
 

(a) The water bodies 
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(b) The convex hulls. 

 
Figure 7: Plots of the number of objetcs remaining after each interation of opening 

by reconstruction against kernel size 

 

 
 

(a) The water bodies 
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(b) The convex hulls 

 
Figure 8: Plots of the shapiness indices against the areas of the objects 

 

 
 

(a)The water bodies                               (b) The convex hulls 

 
 

Figure 9: Skeletons 
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Figure 10: Homotopic ratios of the water bodies and their corresponding 

 convex hulls. 


